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Abstract. The level statistics of a tight-binding Hamiltonian describing strongly interacting
particles in a disordered system is investigated. It is found to be characterized bytwo transitions
as functions of interaction strength. The first is from Poisson statistics to Wigner (GOE) statistics
as interactions between the particles are turned on, and the second is back to Poisson statistics
as the interactions become stronger. The dependences of both transitions on the interaction
strength, filling factor, size of the sample, disorder and range of interactions are considered.
Possible experimental consequences are discussed.

1. Introduction

Statistical properties of energy spectra of disordered quantum systems have been at the
centre of much recent activity [1–11]. Part of the interest stems from the fact that they are
related to localization of single-electron wave functions in disordered systems [2–5]. Most
single-electron spectra can be described in the framework of random-matrix theory (RMT)
originally proposed by Wigner and Dyson to explain the spectral properties of complex
nuclei [12–14]. Metallic systems which have time-reversal symmetry obey the Gaussian
orthogonal matrix ensemble (GOE) eigenvalue statistics, while for systems where time-
reversal symmetry is broken (for example by a magnetic field) unitary matrix ensemble
(GUE) eigenvalue statistics emerges. Symplectic ensemble (GSE) statistics is observed for
cases in which spin–orbit scattering is present and time-reversal symmetry is respected. On
the other hand, once the system is localized the spectrum follows Poisson statistics.

It has been shown [12, 13] that under the assumptions of RMT, i.e., for a system
represented by a Hamiltonian of statistically independent random-matrix elements invariant
under time reversal, the probability density of the level spacings is given by the Wigner
(GOE) distribution

Pw(s) = πs

2
exp

(
−πs2

4

)
(1)

where s is the energy separation between two consecutive levels in units of the mean
level spacing1. Another useful statistical measure is the variance of the number of levels
in an energy window of sizeE centred around a particular value of energyε denoted
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by var(Nε(E)) = 〈N2
ε (E)〉 − 〈Nε(E)〉2, where 〈. . .〉 denotes an average over different

realizations of disorder. Under the assumptions of RMT the variance is given by

var(Nε(E)) ∼ 2

π2
ln(〈Nε(E)〉) + 0.44. (2)

The RMT Gaussian ensemble corresponds to the statistical properties of a disordered system
in the metallic regime as long as one refers to an energy window smaller than the Thouless
energyEc (defined asEc = D/L2, whereD is the the diffusion constant andL is the length
of the system). ForE � Ec the variance behaves as [2]

var(Nε(E)) ∼ Nd

(
E

Ec

)d/2

(3)

whered is the dimensionality andNd is a numerical factor which for the three-dimensional
case isN3 = √

2/6π3 and for the two-dimensional case isN2 = 1/4π2.
For systems which may be described by a random Hamiltonian with almost zero off-

diagonal elements the level spacing statistics corresponds to the Poisson distribution

Pp(s) = exp(−s) (4)

and the variance to

var(Nε(E)) ∼ 〈Nε(E)〉. (5)

This is the case for a disordered system in the localized regime where the eigenvectors are
spatially localized and have a very small overlap with each other.

The crossover between the various statistical ensembles at the metal–insulator transition
is the focus of several recent studies [6]. The level separation at the transition is usually
described in terms of a hybrid of the Wigner and Poisson distributions [6, 7, 8], which
can be used to identify the critical disorder for which the transition occurs. Recently a new
dimensionally dependent statistical behaviour of the spectrum at the mobility edge, different
to the usual matrix ensemble results, was predicted [9]. Some evidence for that behaviour
has been seen in a recent numerical study [10]. In another numerical study [11] it has been
shown that the form of the distribution of the level spacing at the transition does not depend
on whether the statistics in the metallic region was of the GOE or the GUE type.

Unlike for single-particle systems, the level statistics for interacting systems in
condensed-matter physics is much less studied, although it is the standard starting point
for nuclear physics. The many-particle spectrum of strongly correlatedorderedcondensed
matter systems has been studied by Montambaux and co-workers [15, 16]. They have
investigated the level separation statistics of the whole spectrum and shown that, except for
in certain cases in which a system is integrable, the excitations follow a Wigner distribution.

On the other hand, the statistical properties of strongly correlated disordered systems
have not been studied yet. In [17] the weakly interacting many-particle excitation spectrum
of a disordered system was investigated. It was found that the high excitations of a non-
interacting many-particle system follow Poisson statistics. This holds also forvery weakly
interacting systems. Once interactions become significant a transition of the many-particle
excitation spectrum towards Wigner statistics is observed.

The strongly correlated disordered many-particle excitation spectrum of a quantum dot
has recently become experimentally accessible by using a novel device composed of two
quantum dots in a series in which one of the dots functions as a spectrometer and the
differential conductance through the dot is measured [18]. This device has recently been
used to measure the many-particle ground-state energy as function of the number of electrons
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in the dot, and large fluctuations in this property were observed [19]. A similar technique
may be applied to the study of the many-particle excitations in a quantum dot.

In this paper we shall investigate the Poisson to Wigner transition in detail and determine
the strength of interaction for which this transition occurs. The level statistics follows
Wigner statistics for an intermediate range of interaction strength. At stronger values of the
interaction, asecondtransition occurs and the excitations again follow Poisson statistics. An
explanation of this intricate behaviour of the many-particle level statistics will be provided
based on the nature of the eigenvectors and the energy spectrum in different regions of
parameter space.

We shall concentrate on the two statistical measures of the spectrum discussed above:
the level spacing distribution and the variance in the number of levels in a given energy
window. It will become apparent that special attention has to be given to the exact method
of calculating the variance in order to avoid spurious fluctuations, the nature of which will
be discussed below.

The paper is organized as follows: in section 2 a model of strongly correlated disordered
many-particle systems is presented. In section 3 the behaviour of the level statistics for
different filling factors and the form of the interaction as a function of weak electron–
electron (e–e) interactions is discussed. The limit of strong e–e interactions is discussed in
section 4. An extension of the results to large systems and a discussion of experimental
relevance are presented in section 5. A comparison of the results to the level statistics of
strongly interacting nuclear systems is also presented there.

2. The model

The strongly correlated disordered many-particle quantum dot will be modelled by a tight-
binding 2D model represented by the following Hamiltonian:

H = Hon + Hhop + Hint (6)

where

Hon =
∑

i

εia
†
i ai (7)

(εi is the on-site energy which is chosen randomly between−W/2 andW/2), and

Hhop = V
∑
{i,j}

(a
†
i aj + HC) (8)

whereV is a constant hopping matrix element and{i, j} denotes summation over nearest-
neighbour sites; and finallyHint can take the form of a long-range Coulomb interaction
between the electrons given by

Hint = εc

∑
i 6=j

(a
†
i ai − K)(a

†
j aj − K)

|ri − rj |/u (9)

whereK represents a positively charged jellium and is equal to the average electron density,
ri is the position of the site,u is the distance between nearest-neighbour sites andεc

measures the strength of the interaction. The interaction can also take the form of a nearest-
neighbour interaction:

Hint = εc

∑
{i,j}

a
†
i aia

†
j aj . (10)
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The many-particle energy levels for a finite-size system ofm sites andn electrons are
calculated by the exact numerical diagonalization of anM × M matrix, whereM = (mn).
Once the eigenvalues are obtained for many realizations of disorder (we typically consider
500 different realizations) the energy level spacing distribution around any particular
excitation, as well as the variance in the number of levels in a given energy window,
may be calculated. We typically consider models of 3× 4 sites (m = 12) and up ton = 6
electrons. The disorder is usually chosen asW = 5V for which the single-electron energy
spectrum follows a Wigner (GOE) distribution [17].

3. Weak electron–electron interactions

We shall start our discussion on statistical properties of the energy spectrum for the case of a
many-electron non-interacting system studied in [17]. For that case, any many-electron state
may be represented by electrons occupying a specific set of single-electron energy levels.
The first two many-electron excitations follow the single-electron level spacing distribution
because they always involve the transition of a single electron. This breaks down for higher
excitations since for those excitations the transition of more than one electron might be
energetically favourable. The transition of electrons between two adjacent states may also
involve some of the electrons going down to lower single-electron states. Thus, even in
the case for which the underlying single-electron levels exhibit level repulsion, one may
expect the disappearance of level repulsion between two neighbouring many-particle energy
levels. This can be understood in terms of Shklovskii’s argument for the appearance of level
repulsion [6]. Consider a system which is described by a random diagonal HamiltonianH0

with eigenvaluesε1, ε2, . . . and eigenvectors|91〉, |92〉, . . .. Now let us consider what
happens to two close adjacent eigenvaluesεn → εn+1 when one includes a non-diagonal
termV in the Hamiltonian. In this case one can treat those levels as a two-level system [2]
for which in first-order perturbation theory, the separation between the eigenvalues is given
by

sn =
√

(εn+1 − εn)2 + |〈9n|V |9n+1〉|2 (11)

i.e., close levels repel each other. For the disordered Anderson model, the on-site energy
(equation (7)) plays the role ofH0 while the hopping term (equation (8)) is analogous to
V . Since the hopping term is a single-electron operator, once the adjacent levels differ by
more than one single-electron occupation then〈9n|V |9n+1〉 = 0 and to first order there
is no additional level repulsion. Therefore, when several transitions of electrons between
neighbouring levels occur, one expects that the level spacing distribution will return to its
original Poissonian form.

This is confirmed numerically in figures 1 and 2 where the excitation statistics of
high-lying excitations are presented. Averaging over the distribution of 50 neighbouring
excitations at the middle of the spectrum was performed in order to enlarge the statistical
ensemble. This helps to smooth out the distribution without changing its qualitative form.
It can be seen that for the non-interacting case there is no level repulsion. For the half-filled
case (n = 6) there is a perfect fit to a Poisson distribution. For the quarter-filled case
(n = 3) the numerical curve is lower than the Poisson curve. This might be expected since
there are only three electrons and a non-negligible proportion of neighbouring many-particle
states involve only single-electron transitions.

Once interactions between the particles are taken into account our previous arguments
are no longer valid. In the case of weak e–e interactions one can gain some insight into
the level repulsion behaviour from the following considerations. Since the non-interacting
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Figure 1. The many-particle level spacingP(s) as a function of small values of the long-range
e–e interactions for the half-filled casen = 6. The full curve represents the Poisson distribution
(equation (4)) while the dashed line represents the Wigner (GOE) distribution (equation (1)).

Figure 2. The many-particle level spacingP(s) as a function of small values of the long-range
e–e interactions for the quarter-filled casen = 3.

many-particle energy levels follow Poisson statistics, this system can be represented by a
diagonal random HamiltonianHon + Hhop with random diagonal termsε1, ε2, . . ., which
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are of course the eigenvalues of the Hamiltonian and eigenvectors|ψ1〉, |ψ2〉, . . .. Now let
us again consider what happens to two close adjacent eigenvaluesεn → εn+1 when one
includes a small interaction termHint in the Hamiltonian. It is convenient to write|ψn〉 as
a sum of eigenvectors in the site occupation number representation|ϕi〉 (i = 1, . . . , M)

|ψn〉 =
∑

i

cn
i |ϕi〉 (12)

wherecn
i is a real amplitude. Thus the matrix element between the adjacent states is

〈ψn|Hint |ψn+1〉 =
∑
i,j

cn
i c

n+1
j 〈ϕi |Hint |ϕj 〉 (13)

which, after inserting the explicit form ofHint for the long-ranged interaction given in
equation (9), gives

〈ψn|Hint |ψn+1〉 =
∑

i

cn
i c

n+1
i Uiεc (14)

whereUiεc is the electrostatic energy of the|ϕi〉 state given by

Ui =
∑
k 6=l

〈ϕi |(a†
kak − K)(a

†
l al − K)|ϕi〉

|rk − rl|/u . (15)

For high excitations one expects that the eigenfunctions|ψn〉 of Hon+Hhop will be composed
approximately equally from all the eigenvectors|ϕi〉 of the site representation, and therefore,
because of normalization considerations (

∑M
i=1 |cn

i |2 = 1), cn
i ∼ cn+1

i ∼ ±1/
√

M. Summing
M random-signed contributions, while subtracting the average increase in the energy of each
state due to the interactions, gives the following typical matrix element:

〈ψn|Hint |ψn+1〉 = εc 1U√
M

(16)

where1U =
√

U2 − Ū2 and the average is performed over theM different values ofUi .
A numerical calculation of1U for several values ofm andn is presented in figure 3.

The effect of the interaction on the level separation is expected to become significant
once the matrix element is of the same order as the many-particle level spacing, which in
the non-interacting metallic case can be crudely estimated as1 ∼ nVband/M, where the
width of the single-electron bandVband = 8V . This estimation is reasonable as long asW

has no significant influence on the level spacing far from the tails of the band. Therefore,
we expect a significant deviation from the Poissonian behaviour to occur at

εc ∼ nVband

1U
√

M
. (17)

Inserting the appropriate values ofVband , n, andM in the previous equation, and using the
values of1U for m = 12 andn = 3 or 6 appearing in figure 3, we end up withεc ∼ 2.2V

for the half-filled case andεc ∼ 4.2V for the quarter-filled case. As can be seen in figures
1 and 2 even for a very weak interaction (εc = 0.05V ) signs of level repulsion already
appear in the distribution of the level spacings. As the interaction becomes stronger the
effect becomes more pronounced, and forεc ∼ 2V the systems already show an almost
perfect fit to the Wigner (GOE) level spacing distribution. This is in good agreement with
our crude estimations for the half-filled case. For the quarter-filled case the transition occurs
a bit earlier than calculated, which might be connected to the fact that in this case we did
not have a fully developed Poisson distribution forεc = 0. Nevertheless, it is interesting
to note that for the half-filled case the level repulsion is stronger than for the quarter-filled
case for the same value ofεc, as expected on the basis of our previous arguments.
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Figure 3. The fluctuations of the electrostatic energy1U = (U2 − Ū2)1/2 where the average is
performed numerically over theM different values ofUi for the appropriate type of interaction
and for different values ofm andn.

As can be seen from equation (17) the transition does not depend explicitly on the
strength of disorder. Thus, as long as the eigenvectors of the system in the site representation
may be considered randomly mixed, i.e.,W is big enough for the mean free path to be
shorter than the system length and smaller than the value for which the localization length
is smaller than the system size, no dramatic change in the behaviour of the spectrum statistics
is expected. This is verified in figure 2, where the level spacing distribution forW = 2V

is also plotted. No significant difference between theW = 2V andW = 5V cases is seen.
It is interesting also to compare the behaviour of the long-ranged Coulomb interaction

to a nearest-neighbour interaction. The averaged electrostatic energy for the low-filling case
can be easily estimated. The main contribution comes from states which have a single pair
of electrons. Those states compose a fractionZn/m of all states, whereZ is the effective
coordination number. Therefore,̄U ∼ εc(n/m), and 1U ∼ εc(Zn/m). Thus, for the
nearest-neighbour interaction the value of interaction for which a significant influence on
the level spacing distribution is expected is of orderεc ∼ mVband/Z

√
M. The quarter-filled

case cannot be considered a low-filling case sinceZn/m ∼ 1 and thus we will again obtain
1U from the numerical calculation presented in figure 3, givingεc ∼ 2.2V , which is smaller
than for the long-ranged Coulomb interaction. Thus, we expect that for the same value of
εc the influence of the nearest-neighbour interactions on the energy level statistics will be
larger than the long-ranged Coulomb interaction. This can be clearly seen in figure 4 where
the level spacing distributions for several values ofεc are presented.

As we have mentioned in the introduction another measure of the statistical properties
of the energy spectrum is the variance in the number of many-particle energy levels for
a given energy window. var(Nε(E)) as a function of〈Nε(E)〉 for the half-filled case is
plotted in figure 5, whereε is chosen as the averaged energy of theM/2 eigenvalue. It can
be seen in the inset that for small values of〈N(E)〉 < 4 the εc = 0 variance follows the
Poisson result (equation (5)), while forεc = 2V the Wigner behaviour is observed (equation
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Figure 4. The many-particle level spacingP(s) as function of small values of nearest-neighbour
interactions for the quarter-filled casen = 3.

(2)). For values ofεc in between a gradual crossover from the Poisson to the Wigner curve
can be seen.

For larger values of〈N(E)〉 a strong departure from both the Poisson and Wigner
variance is apparent. Part of the reason for the large variance is sample to sample fluctuation.
Small many-particle systems are especially sensitive to global displacements of the spectrum
between realizations since there are onlym � M random site energies which determine all
of the randomness in the spectrum. In order to see the net variance we also calculated the
variance of the number of levels in an energy window of sizeE centred around a particular
energy level̀ denoted by var(N`(E)). Thus the energy window is placed always around
some particular energy level and is less sensitive to global displacements of the spectrum
for different realizations of disorder. The results for var(NM/2(E)) are presented in figure
6. For 〈N(E)〉 < 10 an excellent fit with the Poisson or Wigner prediction of the variance
is evident. Also for higher values of〈N(E)〉 the deviations from the predictions of Poisson
or Wigner statistics are much smaller.

The same general behaviour can be seen also for the quarter-filled case. var(NM/2(E))

is plotted in figure 7. As for the distribution of level spacing, even forεc = 0 the variances
are below the Poisson prediction.

4. Strong electron–electron interactions

In the previous section we have shown that once the e–e interactions are strong enough the
many-particle energy levels of an interacting system follow the Wigner (GOE) statistics. In
this section we shall investigate what happens when the interactions are further increased,
i.e., larger values ofεc are assumed. It is convenient to begin by considering the limit
εc � V . In this limit one can treat the hopping term in the Hamiltonian (Hhop) as a



The excitation statistics of disordered systems 397

Figure 5. The variance in the number of many-particle energy levels var(Nε(E)) for a given
energy windowE centred around an energyε as function of the averaged number of levels
〈Nε(E)〉 for the half-filled case. The inset presents an enlargement of the〈Nε(E)〉 < 5 region.
The curves correspond to the theoretical predictions of the variance for Poisson and Wigner
statistics.

perturbation toHon + Hint which is diagonal in the site representation. Therefore the|ϕi〉
are the eigenvectors of the unperturbed Hamiltonian with eigenvaluesεi . Since the on-site
term in the Hamiltonian (Hon) is the only random part in the Hamiltonian and there are no
off-diagonal terms one would expect the eigenvalue statistics to correspond to the Poisson
statistics. This is verified in figures 8 and 9, and 11 and 12 below. Therefore, there must be
a transition between the Wigner statistics which we have observed in the previous section
for the energy level statistics for intermediate values of interaction to the Poisson statistics
we expect for strong interactions.

Let us begin by quantifying the transition for the nearest-neighbour interactions. States
in the site representation can be classified according to the number of nearest neighbours
p. Thus, the energy of a state is given by its electrostatic energypεc plus the influence of
disorder. The disorder will change the energy of the state by an amount of order

√
nW/2.

Therefore, strong interactions (i.e.,εc >
√

nW/2) will create ‘bands’ in the density of
states of the HamiltonianHon + Hint . Once the bands are separate, each band can be
treated independently. For states within a specific bandp the situation is very similar
to the situation for the non-interacting case described in section 3. In order to estimate
whether the statistics within the band corresponds to Poisson statistics or Wigner statistics
we shall again use the first-order perturbation argument on the repulsion for two adjacent
eigenvaluesεn → εn+1. When a small hopping termHhop is added to the Hamiltonian, the
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Figure 6. The variance in the number of many-particle energy levels var(N`(E)) for a given
energy windowE centred around an energy level` = M/2 as function of the averaged number
of levels〈N`(E)〉 for the half-filled case. The inset presents an enlargement of the〈N`(E)〉 < 10
region.

level repulsion between the two states in the band is proportional to

〈ϕn|Hhop|ϕn+1〉 =
{

V if |ϕn〉 is different from|ϕn+1〉 by a single electron hop

0 otherwise.
(18)

Thus, the value of the matrix element depends crucially on the degree of correlation between
neighbouring eigenvectors. When there is no correlation, i.e., when states withp nearest
neighbours are different from each other by more than a single electron hop, the statistics
should follow Poisson statistics since there is no repulsion. On the other hand, when states
are different by a single electron hop, the statistics must remain Wigner statistics. For the
half-filled case the 50 neighbouring levels at the middle of the spectrum belong to thep = 4
band. In this band there are only a few states which differ from each other by more than a
single electron hop and therefore onceεc >

√
nW/2 ∼ 6V we expect to see only a small

movement towards Poisson statistics which will not be enhanced asεc increases. This is
confirmed in figure 8. An even more pronounced behaviour occurs for the quarter-filled
case (figure 9). The 50 neighbouring levels at the middle of the spectrum belong to the
p = 1 band for which two electrons are nearest neighbours and one has no neighbours. In
this case many states differ by a single electron hop, resulting in no transition at all to the
Poisson statistics even for extremely high values ofεc.

The general situation is somewhat similar for the long-range e–e interaction case,
although the resulting level statistics behaviour will be totally different. High values of
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Figure 7. The variance in the number of many-particle energy levels var(N`(E)) for the quarter-
filled case.

Figure 8. The many-particle level spacingP(s) as function of large values of nearest-neighbour
interactions for the half-filled casen = 6.

εc will create a series of bands, although the separation between the bands as well as
the number of states per band strongly fluctuate (see figure 10). Another (more crucial)
difference is that for the Coulomb interaction, states that have the same electrostatic energy
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Figure 9. The many-particle level spacingP(s) as function of large values of nearest-neighbour
interactions for the quarter-filled casen = 3.

Figure 10. The electrostatic energy (Ui = 〈ϕi |Hint |ϕi〉) for the eigenvectors in the site
representation arranged in an ascending order for the half-filled long-range e–e interaction at
εc = 100V . The inset presents the same data for the quarter-filled case.

generally differ from each other in the position of several electrons. Thus, we expect that
once the bands separate, the statistics will change into Poisson statistics. From figure 10
it is clear that the typical energy separation between the bands around the middle of the
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Figure 11. The many-particle level spacingP(s) as a function of large values of long-range
e–e interactions for the half-filled casen = 6.

Figure 12. The many-particle level spacingP(s) as a function of large values of long-range
e–e interactions for the quarter-filled casen = 3.

spectrum is of order 0.05εc for the half-filled case, and of order 0.1εc for the quarter-filled
case. We expect the transition to Poisson statistics to occur once the separation is larger
than the width of the bands

√
nW/2. Therefore the transition is expected atεc ∼ 120V for
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Figure 13. The variance in the number of many-particle energy levels var(Nε(E)) for strong
long-range e–e interactions in the half-filled case. The inset presents an enlargement of the
〈N`(E)〉 < 5 region.

the half-filled case, and atεc ∼ 40V for the quarter-filled case. This estimation corresponds
rather well with the situation observed in figures 11 and 12.

From our arguments it is clear that the disorderW plays a crucial role in determining
the strength of interaction for which the transition will occur. This is checked in figure 12
where data pertaining to theW = 10V case are presented. As expected, for the same value
of interaction theW = 10V case exhibits a stronger Wigner behaviour than theW = 5V

case.
As in the previous section we have also checked the variance var(Nε(E)) as a function

of 〈Nε(E)〉 for the half-filled Coulomb interaction case. It is plotted in figure 13, where
again ε is chosen as the averaged energy of theM/2 eigenvalue. One can see that the
fluctuations, especially for strong interactions, are very high. Replacing var(Nε(E)) by
var(N`(E)) we obtain the results presented in figure 14. It can be seen that the fluctuations
are strongly reduced and the variance shows a clear transition between the Poisson and
Wigner prediction of the variance, as expected from the level spacing distributions.

5. Discussion

In the previous sections we have seen that the energy level statistics of a disordered
interacting many-particle tight-binding model undergoes two transitions as a function of
the strength of the interaction between the particles. The first is a transition from the
Poisson statistics which characterizes the energy spectrum of non-interacting many-particle
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Figure 14. The variance in the number of many-particle energy levels var(N`(E)) for strong
long-range e–e interactions in the half-filled case. The inset presents an enlargement of the
〈N`(E)〉 < 10 region.

systems to the Wigner (GOE) statistics. Assuming that the average electrostatic fluctuations
depend only weakly (i.e., more weakly than exponentially) on the number of electrons and
number of sites for a fixed filling factor, the dominant part in determining the value of
interaction for which the transition occurs is the number of many-particle states, which rises
exponentially as the system size is increased. Therefore, from equation (17), the strength of
the interaction at which the transition occurs will decrease exponentially as the system size
increases. This will result in Wigner statistics for high excitations of a large many-particle
tight-binding model for even exponentially small interactions.

The second transition in the statistics of the spectrum is from Wigner (GOE) statistics of
the levels back to Poisson statistics. This transition occurs once the interactions are strong
enough to create non-overlapping bands in the system. It is not trivial to calculate the typical
gaps in the spectrum of a classical ordered interacting system; nevertheless estimates show
them to decrease slowly with the number of electrons or the number of sites. Therefore,
for much larger systems than the ones considered here we expect that this transition will
occur at a strength of interaction higher than for small systems, although not necessarily
extremely high as long as the system is only weakly disordered.

Thus, the main chance of seeing a many-particle excitation spectrum which exhibits
statistical properties different to those expected from RMT lies in examining small systems
of a few interacting electrons which are relatively clean. This is exactly the situation
in small quantum dots for which recent measurements of the ground-state energy were
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performed [19].
Finally, we mention another example of strongly interacting many-particle

Hamiltonians—the ones describing nuclear energy levels. For those systems it is well
known that the experimental level statistics can be described rather well by the RMT of
Gaussian ensembles [14]. The main difference between the two systems is that while the
many-particle tight-binding model is described by a sparse matrix for which most matrix ele-
ments are equal to zero, in the nuclear Hamiltonian there are matrix elements of comparable
size connecting all states. Therefore, in the nuclear Hamiltonian there is no single parameter
(such as the interaction strength) which can change the behaviour from the RMT predictions
to some other behaviour. Additional differences between the two systems are that nuclear
Hamiltonians include attractive interactions and that they have no disorder (i.e., they are
translationally and rotationally invariant). Thus the random nature of nuclear Hamiltonians
originates from their complicated interactions, while in the tight-binding model it arises
from the static impurity configuration.
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